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Abstract. The glassy behaviour of the thermal conductivities of structure I xenon and structure II 
hydrate at high temperature are found to be described surprisingly well by a localized oscillator 
model. This observation leads to the suggestion of strong coupling between the localized vibrations 
of the guest with the lattice acoustic phonons. This conjecture is confirmed by a phenomenological 
calculation using the Anderson-Fano resonant scattering model. 
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Introduction 

Clathrate hydrates are nonstoichiometric crystalline inclusion compounds com- 
posed of a water lattice with cavities in which guest atoms or molecules can be 
encaged [1]. Since water is the dominant component of the structure, it is not too 
surprising that many of the properties are similar to that in ice. There are two 
noticeable exceptions. The thermal expansitivity of hydrates [2-4] is often larger 
than ice but their thermal conductivities are smaller [5-11]. More importantly, the 
temperature profile of the thermal conductivity is anomalous as it closely resem- 
bles a glassy (amorphous) material in spite of its well defined crystalline structures 
[12]. Another remarkable feature of the hydrate thermal conductivities is the weak 
dependence on the nature of the guests and details of the crystal structures. Obvi- 
ously, the lower thermal conductivities in the hydrates are the consequence of 
larger anharmonicities in the intermolecular interactions as compared to ice [13]. 
Molecular dynamics calculations have shed some light on the understanding of 
some of these unusual properties [3, 14-17]. It was shown that the guest vibrations 
are localized and their presence responsible for the large thermal expansion in 
the hydrates. Recently the temperature dependence of the thermal conductivity of 
a clathrate hydrate of tetrahydrofuran (THF) has been analysed using a resonant 
scattering model [12]. The major conclusion derived from the analysis is that the 
coupling between the low frequency localized vibrations of the guest with the lat- 
tice phonons is the major dominant phonon-scattering process although details of 
the mechanism are still unknown. A similar anomaly in the thermal conductivity 
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has been observed in other crystalline systems such as doped alkali halides [18- 
20] and crystalline polymers with bulky side groups [21]. Apparently, low energy 
localized vibrations are good scatterers of heat-carrying phonons [24]. 

It has been recognized that the behaviour of the thermal conductivity of glassy 
materials at high temperature can be described very well by a localized oscillator 
model first proposed by Einstein [22] and extended by Slack [23] and Pohl [24, 25]. 
This model has been used to calculate the high temperature thermal conductivity 
of a variety of amorphous solids and the results are generally in semiquantitative 
agreement with experiments. In this investigation, the localized oscillator model 
is also found to reproduce the thermal conductivity in clathrate hydrates at high 
temperature. The success of this model indicates that the lattice vibrations in 
clathrate hydrates are heavily damped as in the case for amorphous materials. 
A phenomenological model based on resonant scattering of lattice phonons via 
the interactions with the localized guest vibrations is proposed to explain this 
observation. 

Localized Oscillator Model for Thermal Conduction 

In this model, the localized vibrations are assumed to be heavily damped with 
lifetimes of half a period of the oscillation and that the distribution of the localized 
modes in a solid can be approximated by the Debye model. Using the equivalent 
of the gas kinetic equation an expression for the minimum thermal conductivity, 
Amin, can be derived [23, 24] 

| 
A m i n  ( T ) 2  f x 3ex 

- 2 _ 1)2  d x .  (1 )  

0 
At high temperature when T >> OD, the transport integral in Equation (1) 
approaches unity. The limiting thermal conductivity, A~o, is given by 

Aoo = ~ kBn2/3(2vt  + vz) . (2) 

In Equation (2),/cB is the Boltzman constant, n is the atomic number density and 
vt and vl are the transverse and longitudinal sound velocities, respectively. The 
limiting thermal conductivity, Aoo may be determined from experimental density 
and acoustic velocities. Then the thermal conductivity at any temperature can be 
computed from Equation (1). 

Equation (1) has been demonstrated to give a semiquantitative prediction of 
the thermal conductivity for most glassy materials [23]. More significantly, it is 
relevant to the present study that the glassy behaviour of cyanide-doped crystalline 
potassium bromide is correctly predicted. The thermal conductivity was shown to 
fall within the range of the minimum thermal conductivity of the crystalline solid, 
indicating the existence of localized excitations, presumably due to the librational 
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modes of the cyanide ions. Encouraged by these results, the modified Einstein 
oscillator model is applied in this article to the study of the thermal conductivity 
of clathrate hydrates. 

Results and Discussion 

The thermal conductivity of THF hydrate has been determined independently by 
several groups [5, 9, 10] over a wide temperature range. The experimental values 
obtained are fairly scattered, reflecting the inherent technical difficulties involved 
in the determination of the absolute thermal conductivity of poorly conducting 
materials. Nevertheless, the qualitative features of the thermal conductivity profile 
are similar. At high temperature, the thermal conductivity decreases slowly until 
80 K, where it starts to drop more rapidly [9, 10]. The thermal conductivity of 
clathrate hydrates is known to be largely independent of the crystal structure and 
the nature of the guests. For xenon hydrate, the thermal conductivity has been 
measured at 235, 245 and 255 K. There is no noticeable temperature dependence 
within this range and the average thermal conductivity is 0.36 Wm -1 K -~. 

The localized oscillator model has been used to calculate the thermal conduc- 
tivity of structure I xenon hydrate and structure II THF hydrate. The experimental 
densities and sound velocities [22, 23] were used in the calculations. In view of the 
high frequency intramolecular O-H vibrations, the water molecule was treated as 
a rigid atomic group [20]. The minimum thermal conductivities from 30 to 260 K 
calculated from the model are compared with the experimental results in Figure 1. 
The calculated temperature profiles as well as the absolute magnitude of the ther- 
mal conductivities are in substantial agreement with experiments. The predicted 
thermal conductivity for type II THF hydrate falls within the range of the exper- 
imental measurements. There is also good agreement between the calculated and 
measured thermal conductivity of type I xenon hydrate [ 11 ]. It is a pleasant surprise 
that the small difference in the minimum thermal conductivity between type I and 
II hydrate is reproduced by this simple model. This difference is due to a slightly 
smaller atomic number density for xenon hydrates. There is limited experimental 
evidence suggesting that the thermal conductivity of hydrates is slightly dependent 
on the size of the guest [8]. The thermal conductivity of hydrates was found to 
decrease as the size of the guest molecule increases. This observation has led to 
a conjecture that the (hindered) librational modes of the guest are the most effi- 
cient phonon scatterers. The modified Einstein localized harmonic oscillator model 
offers an alternative rationalization of the experimental observations. Equation (2) 
shows that the limiting thermal conductivity is proportional to both the number 
density and the sound velocities [32]. The number density is expected to increase 
with the size of the guest. The increase in number density, however, is weighed 
down by a concomitant decrease in the sound velocities for hydrates with large 
guests [32]. Consequently, the thermal conductivity of the hydrates remains fairly 
constant and exhibits only a weak dependence on the size of the guest molecule [8]. 
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Fig. 1. Experimental  thermal conductivity for THF hydrate . . . .  [5]; X [9] and ~ [10]. 
Exper imental  thermal conductivity for Xe  hydrate - - -  [11]. Theoretical min imum thermal 
conductivity Amin (solid) for structure I xenon hydrate (6 Xe.46 H20,  ~ ---- 0.030 x 1030 m -3,  
v t  --- 1535 m s e c -  1 and vz = 2910 m s e c -  1 [32, 33]); structure II THF hydrate (8 THF. 136 H20  
and treating CHa as an atomic group, n = 0.0358 x 1030 m -3 ,  v t  = 1663 m sec -1 and 
v~ = 3515 m sec -1  [33]). 

The observation made here raises a very important question. Why do the vibrations 
in crystalline clathrate hydrates behave as amorphous materials ? Rephrasing the 
question: how do the lattice modes become localized oscillators when interacting 
with the guest vibrations. 
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A conceptual model for the phonon interactions in the clathrate hydrate can 
be thought of as the localized guest vibrations become embedded in a continuum 
of elastic lattice (acoustic) waves which are responsible for the transportation of 
the thermal energy. This description shares some similarity to problems associated 
with impurity states in the conduction band of solids or discrete electronic states 
embedded in the ionization continuum [26]. The interactions between a localized 
state with continuum can be described by the perturbation theory of Fano [27], 
or in an equivalent way, with the second quantization field theoretical method 
of Anderson [28]. The Anderson-Fano Hamiltonian appropriate for the present 
situation is given by [26], 

1 1 
H = c@(a;ag q- 7) q- E (cOlbl+,kbl, k q- -2) q- E Mk,g(bl+,kag q- a;bl, k) (3) 

k k 

where a +, b + l,k are the creation and ag, bz, k are the annihilation operators for the 

guest (g) and the lattice (1) phonons. The first two terms are just the Hamiltonians 
for the zeroth order (isolated) state of the localized oscillator and lattice vibrations. 
The last term in Equation (3) allows the mixing of the lattice modes with the guest 
vibrations. The strength of the interaction is governed by the matrix element Mk,g. 
If Mk,g is nonzero, there will be exchange of energy between the lattice and the 
guest vibrational modes. In the following, the coupling term will be solved for a 
one-dimensional model system for the interaction of a localized state of energy w9 
with a single elastic (acoustic) lattice wave of energy cvl. 

Representing the localized state by a harmonic Einstein oscillator u~(x) and 
the lattice wave as a plane wave with wave vector k, the matrix element according 
to first-order perturbation theory [27] is simply, 

Mk,g ~ (un(x) IV(x)[ e ikx) (4) 

Considering only the lowest quadratic term [29] in the polynomial expansion of 
the interaction potential V (x) between the guest and the water lattice in the hydrate 
and that the harmonic oscillator is in the ground state (n = 0), Equation (4) reduces 
to the following integral, 

0 o  

v/~ dx [Mk,a l  ,~ ~ / eikxx2e-~ 
- - 0 0  

2 o~ 3 4oz2 I. 

with o~ defined as, 

and the energy of the plane wave, 

(5) 

(6) 
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h 2 k  2 

r~z = 2raz (7) 

where mg is the mass of the guest and mt is the mass of the lattice wave, which 
can be approximated as the mass of a water molecule. 

Equation (5) has several interesting analytical properties. When k 2 = 2o~ 2 the 
coupling matrix element vanishes. That is, the lattice plane wave and the harmonic 
oscillator are out-of-phase. Equating the first derivative of Equation (5) with respect 
to the lattice wave vector k to zero, a maximum value of matrix element IMk,~[ 
can be found when, 

k 2 = 6oz 2 . (8) 

An expression relating the lattice and guest vibrational frequencies at maximum 
I Mk,~ I can be derived by combining Equations (6), (7) and (8), 

(mJ___L~ 3 
mgcogj = 2" (9) 

This relationship can be used to estimate the optimal lattice frequency which 
couples with a given guest vibration. For instance, the rattling motions of methane in 
the small and the large cages [14, 16, 30] have frequencies of 75 cm-  I and 42 cm-1, 
respectively. Equation (9) predicts that the coupling matrix element will maximize 
at lattice modes of 100 cm -1 and 63 cm -1 . These predicted vibrational frequencies 
are remarkably close to the maxima of the transverse acoustic and transverse optic 
phonon branches of ice which are about 70 and 110 cm -1, respectively [31]. The 
magnitude of the coupling matrix element IMk,~l at the resonant frequency is 
about four times higher than at k = 0. For heavier guests where the translational 
vibrations are at lower frequencies, the coupling becomes more efficient with the 
lower energy translation and librational modes of the lattice. Molecular dynamics 
calculations have already shown that the energies of translational vibrations often 
decrease with increasing mass of the guest [16, 17]. It should be cautioned that 
Equation (9) is an oversimplified solution to a very complicated process. In actual 
calculation, the interaction term must be summed over all the vibrational states 
of the localized and lattice vibrations [26] and the higher terms in the potential 
expansion have to be included. 

The physical picture emerging from the study of the Anderson-Fano model of 
interactions can be summarized as follows. Mediated by the interaction potential, 
phonons may hop back and forth between the lattice and the localized guest sites 
and exchange energies. The localized state has became a resonance scatterer. The 
mixing of the guest and lattice vibrational eigenfunctions may be important in 
reducing the conductivity of the heat carrying lattice phonons. This simple model 
is also intuitively appealing. The most efficient exchange of energy between the 
lattice and the guest is expected to occur when the localized vibrations of the guest 
matches that of the acoustic phonons near the zone boundary when the density 
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of states is the highest. Furthermore, scattering of longitudinal zone boundary 
phonons is the dominant contribution to the Umklapp processes which lowers the 
thermal conductivity of a solid [13, 24]. However, it should be noted that even 
though the present phenomenological calculation has demonstrated the existence 
of 'resonance' modes, further work is required to show that this kind of coupling 
is strong enough in substantially reducing the thermal conductivity. At present, 
first principles calculation of thermal conductivity of molecular solids remains a 
formidable problem [13]. 

An alternative theory for heat conduction in clathrate hydrates has been proposed 
earlier [34]. The essential feature of the earlier model [34] shares the similar spirit 
as the localized model discussed here although the details are quite different. It was 
argued that due to the large number densities of the hydrates, the phonon mean free 
path is quenched to a characteristic limiting value which is about the unit cell size 
of the type II structure (17 .~ [36]). Implicit in this theory is that the guest molecule 
has no decisive effect on the thermal conductivity. The mechanism of thermal 
conduction in clathrates is basically the same as in crystalline solids and the role 
of glass-like localized excitations was not discussed. In contrast, according to the 
model described above, the small thermal conductivity of the hydrates is attributed 
to resonant scattering of the lattice modes by the localized guest vibrations thus 
quenching the normal modes of the host lattice. The minimum mean free path for 
the hydrate can be estimated from the atomic number density [24], 1 = n -1/3, 
which is 3.2 A for type I Xe hydrate and 3.0 A for type II THF hydrate. The 
calculated lengths of the mean free path are consistent with the interatomic O-O 

o 

distances in the hydrates (2.6-2.8 A) and substantially smaller than that of the size 
of the unit cell [35, 36]. 

The most important assumption made in the present thermal conductivity model 
is the proposal of a strong coupling between the localized guest modes with that of 
the lattice phonons of similar energies. This conjecture may be examined exper- 
imentally if model clathrate compounds can be synthesized such that the energy 
of the zone boundary phonon branches of the host lattice differs significantly from 
that of the vibrational energies of the guest or, alternatively, from a comparison 
of the thermal conductivity of a clathrate compound in the presence and in the 
absence of the guest. The clathrasils, which are analogues of clathrate hydrates 
with lattice frameworks formed by SiO2 units [37] may be the most promising 
candidates for the latter purpose. Clathrasil compounds of the same structure can 
be prepared with and without the presence of the guest [38, 39]. Work in this area is 
in progress. In passing, it is noteworthy that the coupling of an harmonic oscillator 
with a phonon bath had been studied using statistical mechanical methods [40]. 
Since only harmonic interactions were assumed in the previous investigations, no 
information on thermal resistivity was obtained [41]. 
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